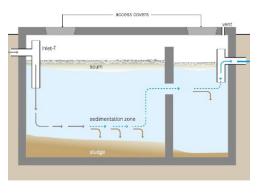

01. Septic tank + Horizontal Flow field

Description

A septic tank is a watertight chamber made of concrete. The black/ grey water flows into the chamber from one side, were settling and anaerobic processes reduce solids and organic waste. A second chamber is needed to prevent solids and scum from escaping the tank.

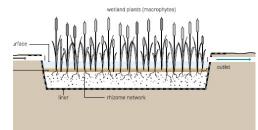
The horizontal flow field replicate the naturally occurring processes of a natural wetland. Water flows from one side of the field to the other side. Particles settle and pathogens are destroyed. The nutrients are neutralized by the plants and (micro)organisms.



Septic tank + Horizontal flow field

System information	<u>1</u>
Square meters:	879m2
Location:	Above- and
	underground
costs:	Average
Maintenance:	Average

Organic waste:	90%
Phosfor:	43%
Ammonia:	64%

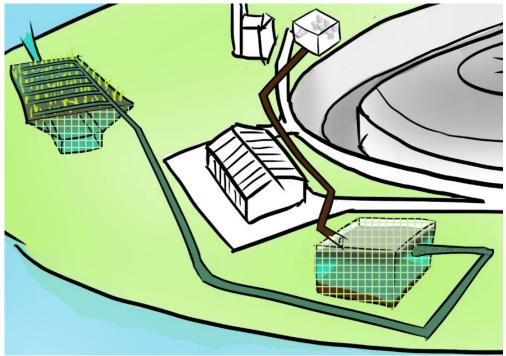


Cross section of a septictank

Underground septic tank

Cross section of a horizontal helofytenfilter

Helofytenfilter

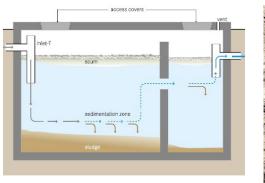

System information cards

02. Septic tank + Vertical flow field

Description

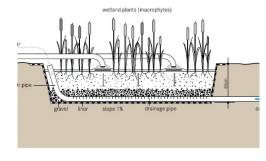
A septic tank is a watertight chamber made of concrete. The black/ grey water flows into the chamber from one side, were settling and anaerobic processes reduce solids and organic waste. A second chamber is needed to prevent solids and scum from escaping the tank.

The vertical flow field replicate the naturally occurring processes of a natural wetland. Wastewater infiltrates into the field and will be drained from the bottom. Particles settle and pathogens are destroyed. The aerobic conditions in a vertical flow field are better compared to a horizontal field, because it can clean more water on a smaller surface.



Septic tank + Horizontal flow field

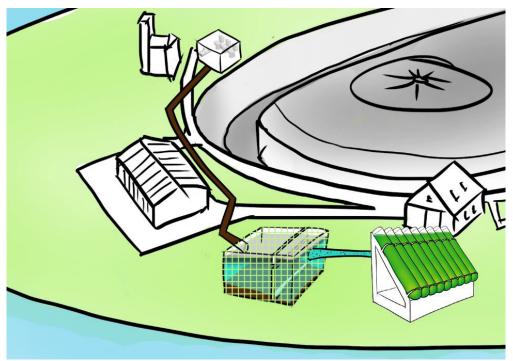
System information	<u> </u>
Square meters:	187m2
Location:	Above and
	under ground
costs:	Average
Maintenance:	Average


Organic waste:	94%
Phosfor:	90%
Ammonia:	83%

System information cards

Underground septic tank

Cross section of a vertical helofytenfilter

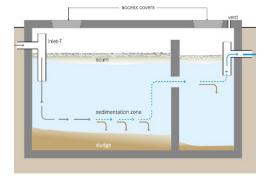

Helofytenfilter

03. Septic tank + Algae

Description

A septic tank is a watertight chamber made of concrete. The black/ grey water flows into the chamber from one side, were settling and anaerobic processes reduce solids and organic waste. A second chamber is needed to prevent solids and scum from escaping the tank.

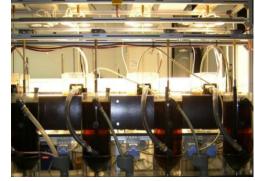
The algae are microorganism that can grow rapidly. For wastewater treatment they are used to filter phosphate and nitrogen. The system uses less energy than conventional system due the in situ oxygen production and a shorter retention time, which consumes less space.


Septic tank + Algae

Maintenance:

System information		
Square meters:	29m2	
Location:	Above a	
	under gr	
costs:	high	

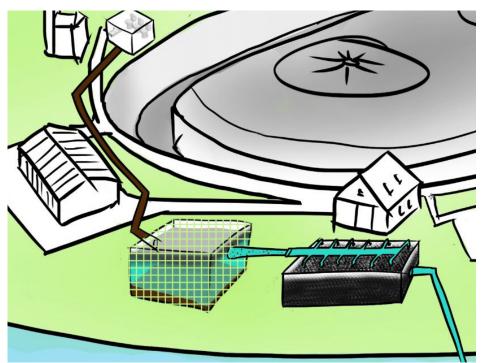
and round nign Average


Organic waste:	94%
Phosfor:	75%
Ammonia:	93%

Cross section of a septictank

Underground septic tank

Algae system

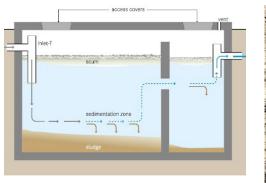

Visualisation of the tubes with algae

04. Septic tank + Trickling filter

Description

A septic tank is a watertight chamber made of concrete. The black/ grey water flows into the chamber from one side, were settling and anaerobic processes reduce solids and organic waste. A second chamber is needed to prevent solids and scum from escaping the tank.

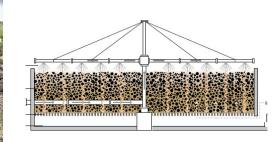
A trickling filter is a fixed bed, biological reactor that can operate under most aerobic conditions. Waste water is continuously sprayed over the top layer where water infiltrates through the soil. The biofilm (microorganism) around the filter material degrades the organic waste.



Septic tank + Trickling filter

System	information

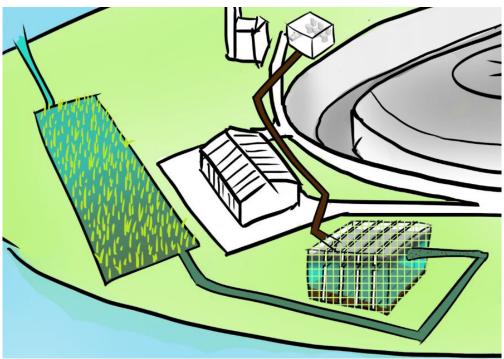
<u>Oystem mormation</u>	
Square meters:	29m2
Location:	Above and
	under ground
costs:	low
Maintenance:	Average


Organic waste:	81%
Phosfor:	25%
Ammonia:	78%

Cross section of a septictank

Underground septic tank

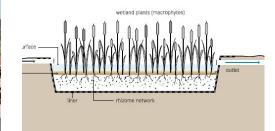
Cross section of a trickling filter


Realisation of a trickling filter

05. ABR + Horizontal Flow field

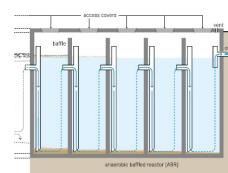
Description

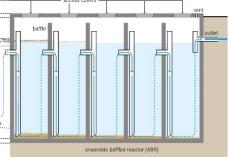
Anaerobic baffled reactor (ABR) is an improved septic tank with multiple chambers. The water is forced to flow through the sludge from bottom to top through many chambers. The increased contact time with the active sludge results in an improved wastewater treatment.


The horizontal flow field replicate the naturally occurring processes of a natural wetland. Water flows from one side of the field to the other side. Particles settle and pathogens are destroyed. The nutrients are neutralized by the plants and (micro)organisms.

ABR + Horizontal flow field

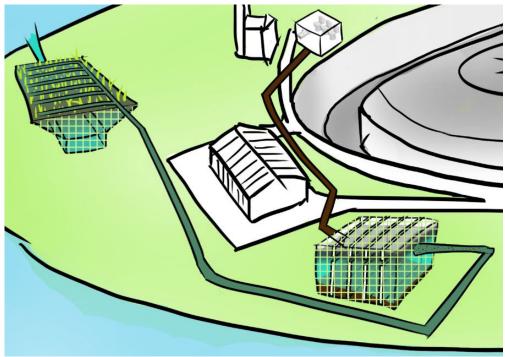
System information		
Square meters:	880m2	Organic was
Location:	Above and	Phosfor:
	under ground	Ammonia:
costs:	high	
Maintenance:	High	


Organic waste:	97%
Phosfor:	49%
Ammonia:	64%



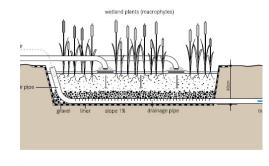
Cross section of a horizontal helofytenfilter

Helofytenfilter


Anaerobic baffled reactor

06. ABR + Vertical flow field

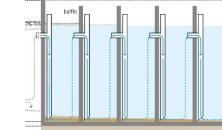
Description


Anaerobic baffled reactor (ABR) is an improved septic tank with multiple chambers. The water is forced to flow through the sludge from bottom to top through many chambers. The increased contact time with the active sludge results in an improved wastewater treatment.

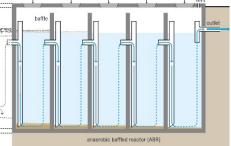
The vertical flow field replicate the naturally occurring processes of a natural wetland. Wastewater infiltrates into the field and will be drained from the bottom. Particles settle and pathogens are destroyed. The aerobic conditions in a vertical flow field are better compared to a horizontal field, because it can clean more water on a smaller surface.

Septic tank + Vertical flow field

System informati	on	I	
Square meters:	188m2	Organic waste:	
Location:	Above and	Phosfor:	
	under ground	Ammonia:	
costs:	High		
Maintenance:	High		



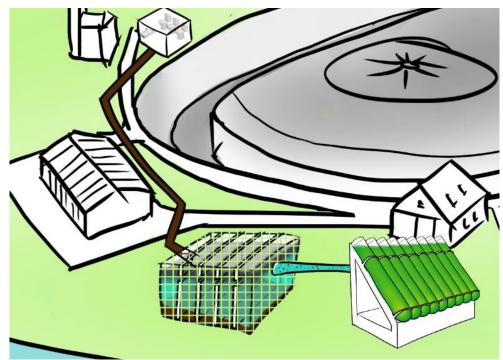
Cross section of a vertical helofytenfilter



98% 91% 83%

Helofytenfilter

System information cards

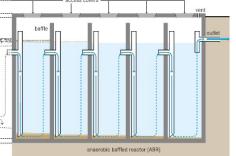

Anaerobic baffled reactor

07. ABR + Algae

Description

Anaerobic baffled reactor (ABR) is an improved septic tank with multiple chambers. The water is forced to flow through the sludge from bottom to top through many chambers. The increased contact time with the active sludge results in an improved wastewater treatment.

The algae are microorganism that can grow rapidly. For wastewater treatment they are used to filter phosphate and nitrogen. The system uses less energy than conventional system due the in situ oxygen production and a shorter retention time, which consumes less space.



ABR + Algae

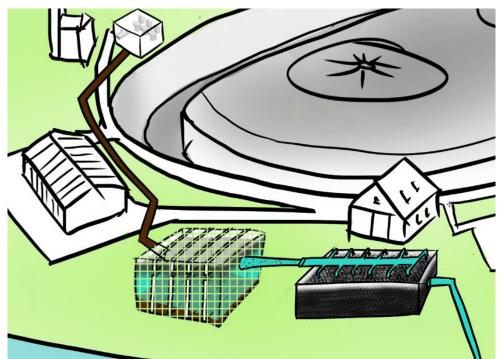
System information

Square meters:	30m2
Location:	Above and
	under ground
costs:	High
Maintenance:	Average

Organic waste:	98%
Phosfor:	78%
Ammonia:	92%

Anaerobic baffled reactor

Algae system

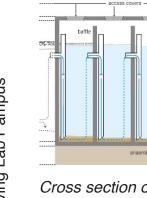

Visualisation of the tubes with algae

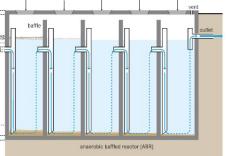
08. ABR + Trickling filter

Description

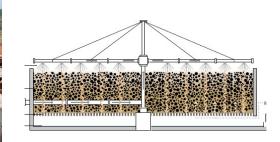
Anaerobic baffled reactor (ABR) is an improved septic tank with multiple chambers. The water is forced to flow through the sludge from bottom to top through many chambers. The increased contact time with the active sludge results in an improved wastewater treatment.

A trickling filter is a fixed bed, biological reactor that can operate under most aerobic conditions. Waste water is continuously sprayed over the top layer where water infiltrates through the soil. The biofilm (microorganism) around the filter material degrades the organic waste.




ABR+ Trickling filter

System	inform	ation

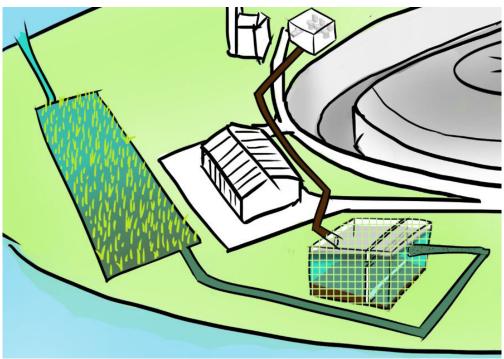

30m2
Above and
under ground
Very high
High

Organic waste:	95%
Phosfor:	34%
Ammonia:	77%

Anaerobic baffled reactor

Cross section of a trickling filter

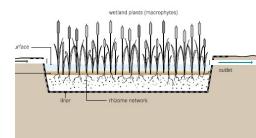
System information cards


Realisation of a trickling filter

09. Settler + Horizontal Flow field

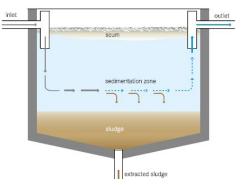
Description

A settler is designed to remove suspended solids by sedimentation. The low flow of the waste water makes sinking of solids possible. Organic waste is barely removed by the settler tank due the short retention time.


The horizontal flow field replicate the naturally occurring processes of a natural wetland. Water flows from one side of the field to the other side. Particles settle and pathogens are destroyed. The nutrients are neutralized by the plants and (micro)organisms.

Settler + Horizontal flow field

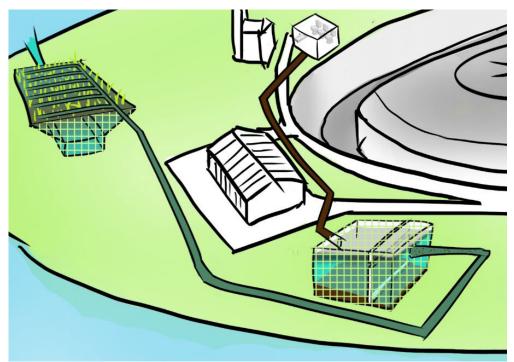
System information	<u>l</u>
Square meters:	872m2
Location:	Above and
	under ground
costs:	Average
Maintenance:	Average


90%
43%
53%

Cross section of a horizontal helofytenfilter

System information cards

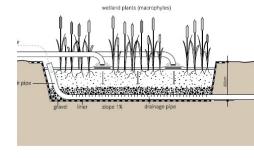
Cross section of a settler tank


Settler tank under construction

10. Settler + Vertical flow field

Description

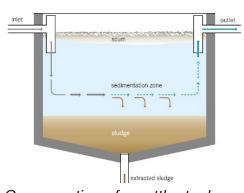
A settler is designed to remove suspended solids by sedimentation. The low flow of the waste water makes sinking of solids possible. Organic waste is barely removed by the settler tank due the short retention time.


The vertical flow field replicate the naturally occurring processes of a natural wetland. Wastewater infiltrates into the field and will be drained from the bottom. Particles settle and pathogens are destroyed. The aerobic conditions in a vertical flow field are better compared to a horizontal field, because it can clean more water on a smaller surface.

Settler + Vertical flow field

System information		
Square meters:	180m2	0
Location:	Above and	Ρ
	under ground	Α
costs:	Average	
Maintenance:	Average	

Organic waste:	93%
Phosfor:	90%
Ammonia:	77%

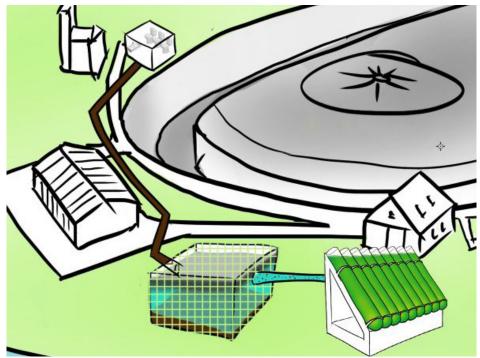


Cross section of a vertical helofytenfilter

Living Lab Pampus

System information cards

Cross section of a settler tank

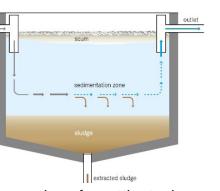

Settler tank under construction

11. Settler + Algae

Description

A settler is designed to remove suspended solids by sedimentation. The low flow of the waste water makes sinking of solids possible. Organic waste is barely removed by the settler tank due the short retention time.

The algae are microorganism that can grow rapidly. For wastewater treatment they are used to filter phosphate and nitrogen. The system uses less energy than conventional system due the in situ oxygen production and a shorter retention time, which consumes less space.



Settler + Algae

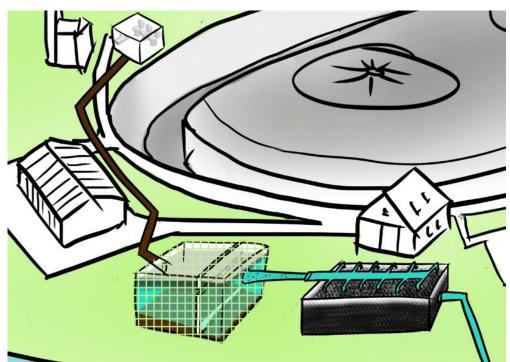
System information

Above and
under ground
Average
Average

93%
75%
90%

Settler tank under construction

Algae system


Visualisation of the tubes with algae

12. Settler + Trickling filter

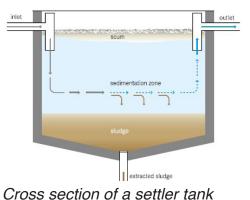
Description

A settler is designed to remove suspended solids by sedimentation. The low flow of the waste water makes sinking of solids possible. Organic waste is barely removed by the settler tank due the short retention time.

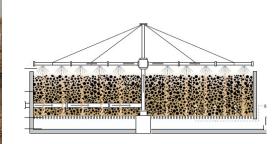
A trickling filter is a fixed bed, biological reactor that can operate under most aerobic conditions. Waste water is continuously sprayed over the top layer where water infiltrates through the soil. The biofilm (microorganism) around the filter material degrades the organic waste.

Settler + Trickling filter

Location:


Maintenance:

costs:


System information

Square meters: 22m2 Above and under ground High High

79%
25%
70%

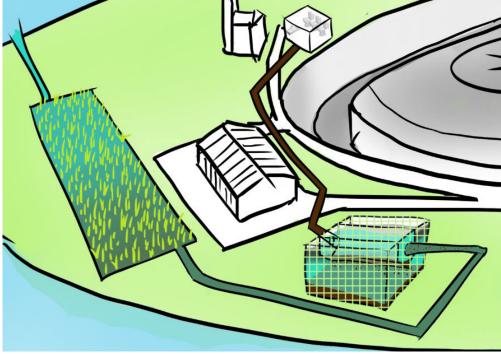
Settler tank under construction

Cross section of a trickling filter

Realisation of a trickling filter

13. Imhoff tank + Horizontal Flow field

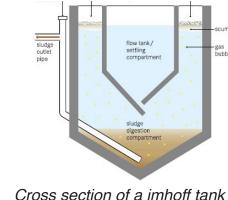
Description


The Imhoff tank is designed for solid-liquid separation and digestion of the settled sludge. It consist of a v-shaped settling compartment above a tapering sludge digestion chamber with gas vents. The shape ensures that foul gas does not disrupt the settling process. The organic waste is treated within the sludge and gives average results.

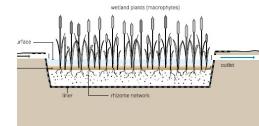
The horizontal flow field replicate the naturally occurring processes of a natural wetland. Water flows from one side of the field to the other side. Particles settle and pathogens are destroyed. The nutrients are neutralized by the plants and (micro)organisms.

Advantages

Upite num apicima ioreperibus mi, nienimus volupta quatur aut qui od evelendunt laboreicid modit ommolupta audaessusdae everspe quati cus, simenihit aliquatio. Ebit ditia qui iur si de ea is re voles ati ium eveni omnististrum et, etur magni autem evel mos debis et experissim veniend eritatat.


Onet et a sum aut aut et in es essectur magnimi

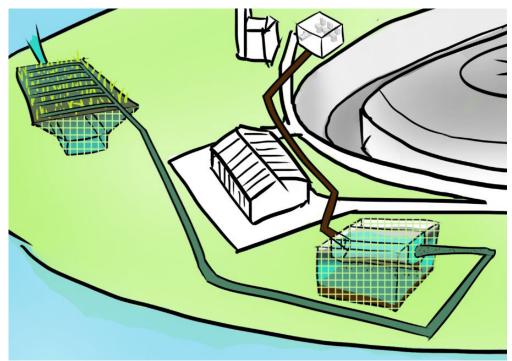
Imhoff tank + Horizontal flow field


System information	on	
Square meters:	885m2	Organic wa
Location:	Above and	Phosfor:
	under ground	Ammonia:
costs:	Average	
Maintenance:	Average	

Organic waste:	91%
Phosfor:	51%
Ammonia:	57%

Imhoff tank without grating

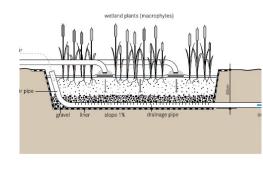
Cross section of a horizontal helofytenfilter



14. Imhoff tank + Vertical flow field

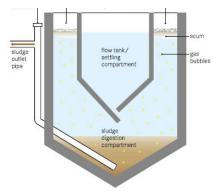
Description

The Imhoff tank is designed for solid-liquid separation and digestion of the settled sludge. It consist of a v-shaped settling compartment above a tapering sludge digestion chamber with gas vents. The shape ensures that foul gas does not disrupt the settling process. The organic waste is treated within the sludge and gives average results.


The vertical flow field replicate the naturally occurring processes of a natural wetland. Wastewater infiltrates into the field and will be drained from the bottom. Particles settle and pathogens are destroyed. The aerobic conditions in a vertical flow field are better compared to a horizontal field, because it can clean more water on a smaller surface.

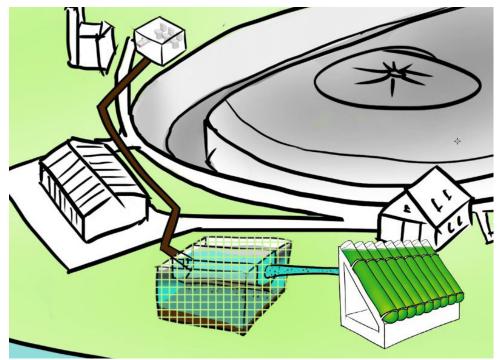
Imhoff tank + Vertical flow field

System information	1	
Square meters:	193m2	Organic waste:
Location:	Above and	Phosfor:
	under ground	Ammonia:
costs:	Average	
Maintenance:	Average	


Organic waste:	94%
Phosfor:	92%
Ammonia:	79%

Cross section of a vertical helofytenfilter

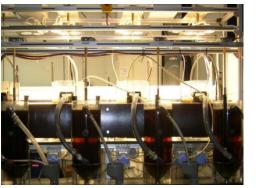
Helofytenfilter


Imhoff tank without grating

15. Imhoff tank + Algae

Description

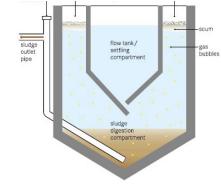
The Imhoff tank is designed for solid-liquid separation and digestion of the settled sludge. It consist of a v-shaped settling compartment above a tapering sludge digestion chamber with gas vents. The shape ensures that foul gas does not disrupt the settling process. The organic waste is treated within the sludge and gives average results.


The algae are microorganism that can grow rapidly. For wastewater treatment they are used to filter phosphate and nitrogen. The system uses less energy than conventional system due the in situ oxygen production and a shorter retention time, which consumes less space.

Imhoff tank + Algae

System	inform	ation

Square meters:	35m2	Organic waste:
Location:	Above and	Phosfor:
	under ground	Ammonia:
costs:	Average	
Maintenance:	Average	

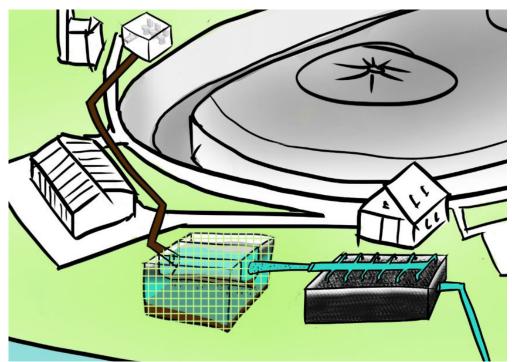

Algae system

94%

71% 91%

Visualisation of the tubes with algae

Cross section of a imhoff tank

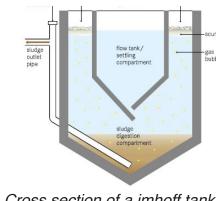

Imhoff tank without grating

16. Imhoff tank + Trickling filter

Description

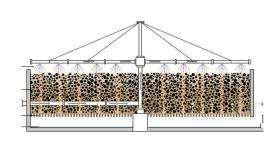
The Imhoff tank is designed for solid-liquid separation and digestion of the settled sludge. It consist of a v-shaped settling compartment above a tapering sludge digestion chamber with gas vents. The shape ensures that foul gas does not disrupt the settling process. The organic waste is treated within the sludge and gives average results.

A trickling filter is a fixed bed, biological reactor that can operate under most aerobic conditions. Waste water is continuously sprayed over the top layer where water infiltrates through the soil. The biofilm (microorganism) around the filter material degrades the organic waste.



Imhoff tank + Trickling filter

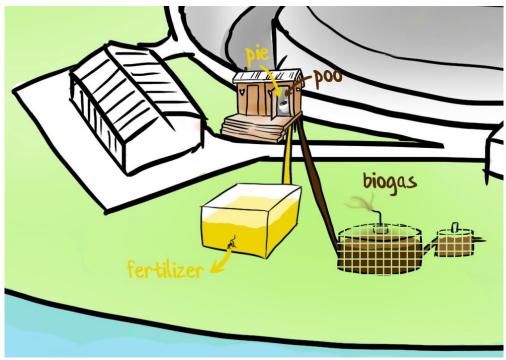
System	information


<u>Oystenn mitormatio</u>	<u>/11</u>		
Square meters:	35m2	Organic waste:	81%
Location:	Above and	Phosfor:	36%
	under ground	Ammonia:	73%
costs:	High		
Maintenance:	High		

Т

Imhoff tank without grating

Cross section of a trickling filter

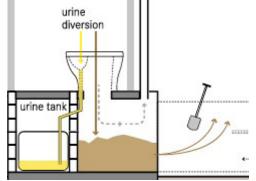

System information cards

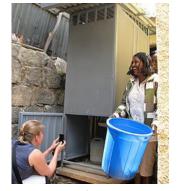
Cross section of a imhoff tank

17. Dehydration vaults

Description

Dehydration vaults are used to collect and store dry faeces and urine separately. The vaults are water tight and need ventilation. When faeces are not mixed with liquids they quickly dry. By the absence of moisture, organisms cannot grow, pathogens are destroyed and smell is minimized. Urine can be used as fertilizer were dry faeces alter into compost.



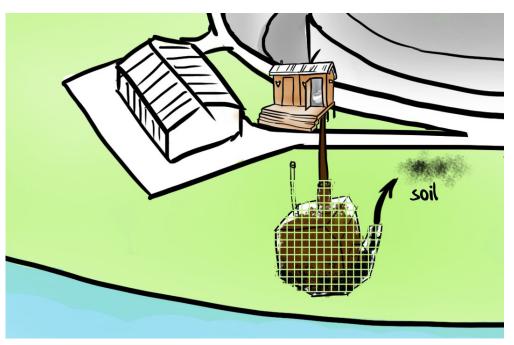

Dehydration vaults

System information	on
Square meters:	?? m2
Location:	Above
	ground
costs:	high
Maintenance:	high

Organic waste:	100%
Phosfor:	100%
Ammonia:	100%

The simplicity of a dehydration vault

Seperation toilet

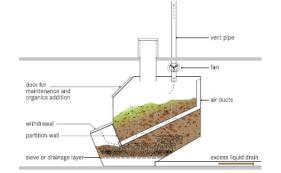


System that creates fertelizer from urine

18. Compost toilets

Description

Composting refers to the process in which biodegradable components are biologically decomposed by microorganisms under aerobic conditions. A chamber is designed to convert excreta and organics into compost. The compost is a stable inoffensive product that can be safely handled and used as a soil conditioner. The compost is easily accessible.


Compost toilet

System	information

Square meters:	
Location:	
costs:	
Maintenance:	

153m2 Above and under ground low high

Organic waste:	100%
Phosfor:	100%
Ammonia:	100%

Cross section of a compost chamber

Modern composting toilet

Simplicty of a toilet seat mostly used